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Direct involvement of hydroperoxoiron species in catalytic
oxidations by cytochrome P450 enzymes is a subject of continuing
debate. Until recently, only the high-valent iron oxo intermediates
were believed responsible for electrophilic oxidations.1

The products and kinetic isotope effects observed by several
groups in wild-type enzymes pointed, however, to the involvement
of more than one reactive intermediate.2-5 Several reports6-9

proposed metal hydroperoxo species as oxidants in mutant systems
where high-valent oxo species were presumably unavailable.
Arguing against this proposal is the reported lack of reactivity of
a cryo-generated hydroperoxoiron species.10 Some DFT calculations
suggested the existence of two spin isomers of iron oxo species,
which could account for the observation of two reactive intermedi-
ates.11 A possibility that the disruption of hydrogen bonding in
mutants might lead to different reactivity patterns for the oxo
intermediates has also been recognized.12

Several years ago, we discovered13,14 a macrocyclic chromium-
based system that exhibited transformations similar to those
proposed for catalytic oxidations by cytochrome P450 enzymes,
Scheme 1. The hydroperoxo complex, generated by one-electron
reduction of the superoxo precursor, yields a strongly oxidizing
Cr(V), E(CrV/CrIV) g 1.1 V.14 In the absence of added reductants,
Cr(V) decomposes with a rate constant of 0.43 s-1, presumably by
intramolecular oxidation of the macrocycle.

Direct studies of the reactivities of L1(H2O)CrOOH2+ and
L1Cr(V) (L1 ) trans-[14]aneN4) proved challenging, but we have
now observed the oxidation of triarylphosphines with each form
separately. To the best of our knowledge, this is the first case of a
dynamic hydroperoxo/high-valent oxo system where kinetic meas-
urements on the individual forms have been reported.

The reaction between L1CrV 15 and triarylphosphines P(p-C6H4-
R)316 exhibited a 1:1 stoichiometry and mixed second-order kinetics
independent of [H+] (0.013-0.027 M). Figure 1 shows a Hammett
plot for the reaction with five different phosphines, givingF )
-0.69, consistent with the electrophilic character of Cr(V) in these
reactions.

When L1CrV was generated from L1Cr18O18OH2+ in H2
16O, in a

solution containing either16O2 or 18O2, the product OPPh3 contained
no labeled oxygen.17 As described below, the most reasonable
formula for Cr(V) under these conditions is L1Cr(16O)(18O)+. Thus,
the source of O in OPPh3 is solvent H2O. None of the chromium
species should exchange oxygen with H2O on the time scale of
these reactions,18 which suggests electron transfer, eqs 1-3, as the
most likely mechanism.

The reaction of eq 2 is fast19,20 and provides a mechanism for
the incorporation of water oxygen into OPPh3. Reaction 3 is similar
to the radical/oxoiron recombination in the “rebound” mechanism
of cytochrome P450 and should be very fast.21

The study of the L1(H2O)CrOOH2+/PPh3 reaction employed
competition kinetics and took advantage of the catalysis by H+.
The absorbance change was provided by Ru(NH3)5py2+, which also
has the necessary reactivity toward L1CrV, kRupy ) (6.5 ( 0.6) ×
104 M-1 s-1 at 0.013 M HClO4 and 0.017 M ionic strength.22,23

A solution of L1(H2O)CrOO2+ was allowed to react with an
excess of Ru(NH3)5py2+ (1 mM) in the presence of PPh3. The
chemistry is shown in Scheme 2, and the kinetic treatment is shown
in the Supporting Information.

At low acid concentrations (3.7-20 mM) and an ionic strength
of 0.83 M,23 3 equiv of Ru(NH3)5py2+ was consumed for each
equivalent of L1(H2O)CrOO2+. One equivalent generates L1(H2O)-
CrOOH2+, and the rest scavenges L1Cr(O)2+. At higher [H+], up
to 0.83 M, the amount of consumed Ru(NH3)5py2+ was lower, and

Figure 1. Hammett plot for the reaction between L1Cr(O)2+ and P(p-C6H4-
R)3 in 67% aqueous acetonitrile, 0.013 M HClO4, 25 °C, k in units M-1

s-1.

Scheme 1

L1CrV + PPh3 98 L1CrIV + PPh3
•+ (1)

PPh3
•+ + H2O 98 HOPPh3

• + H+ (2)

HOPPh3
• + L1CrIV 98 OPPh3 + L1CrIII + H+ (3)
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the absorbance changes exhibited saturation behavior. In the limit
of high [H+], only 1 equiv of Ru(NH3)5py2+ was consumed per
mole of L1(H2O)CrOO2+. The data were treated according to
Scheme 2, showing a competition between the L1(H2O)CrOOH2+/
PPh3 reaction and the conversion of L1(H2O)CrOOH2+ to L1Cr(O)2+.
The calculated pseudo-first-order rate constant for the L1(H2O)-
CrOOH2+/PPh3 reaction varied linearly with [H+] (0.004-0.83 M)
and [PPh3] (0.31-0.62 mM), yielding a third-order rate constant
of 850 M-2 s-1.24 The18O-labeled material, L1(H2O)Cr18O18OH2+,
produced18OPPh3 (71% by EI-MS), in the presence of either16O2

or 18O2, clearly demonstrating O-atom transfer.
The clear kinetic and mechanistic differences observed under

the two limiting sets of conditions in this work confirm that two
distinct forms of the oxidant- L1Cr(O)2+ and L1(H2O)CrOOH2+

- exist and react. L1Cr(O)2+ reacts by electron transfer in an H+-
independent process. L1(H2O)CrOOH2+ transfers oxygen to the
phosphine in an acid-catalyzed reaction. Reactions of PPh3 with
other, well-characterized hydroperoxo metal complexes25,26are also
strictly first-order in H+, a finding that adds further support to the
mechanistic assignments in the present work.

Interestingly, the rate constant for PPh3 oxidation by L1(H2O)-
CrOOH2+ is nearly identical to that for the oxidation by CraqOOH2+.26

Thus, L1(H2O)CrOOH2+ is exceptional in that it converts to a high-
valent oxo form, but its reactivity in O-atom transfer reactions
appears quite ordinary. The investigations of L1(H2O)CrOOH2+ in
other types of reactions, currently underway in our laboratory,
should provide some clues as to the reactivity of hydroperoxo
intermediates in P 450-catalyzed reactions.
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